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The stress corrosion cracking (SCC) and corrosion fatigue behaviour perpendicular and parallel to the
fusion line in the transition region between the Alloy 182 Nickel-base weld metal and the adjacent SA
508 Cl.2 low-alloy reactor pressure vessel (RPV) steel of a simulated dissimilar metal weld joint was
investigated under boiling water reactor normal water chemistry conditions. A special emphasis was
placed to the question whether a fast growing interdendritic SCC crack in the highly susceptible Alloy
182 weld metal can easily cross the fusion line and significantly propagate into the adjacent low-alloy
RPV steel. Cessation of interdendritic SCC crack growth was observed in high-purity or sulphate-contain-
ing oxygenated water under constant or periodical partial unloading conditions for those parts of the
crack front, which reached the fusion line. In chloride containing water, on the other hand, the interden-
dritic SCC crack in the Alloy 182 weld metal very easily crossed the fusion line and further propagated
with a very high rate as a transgranular crack into the heat-affected zone and base metal of the adjacent
low-alloy steel. The observed SCC cracking behaviour at the interface correlates excellently with the field
experience of such dissimilar metal weld joints, where SCC cracking was usually confined to the Alloy 182
weld metal.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Alloy 182 has been widely used as a weld filler metal to join the
low-alloy steel (LAS) reactor pressure vessel (RPV) and pressure
vessel nozzles to both wrought nickel-base alloys (Alloy 600) and
austenitic stainless steel (304L, 316L, 316NG) components in light
water reactors by manual shielded metal arc welding (SMAW). In
recent years, incidents of stress corrosion cracking (SCC) in Alloy
182 in both boiling water (BWR) [1,2] and pressurized water reac-
tors (PWR) [2,3] were reported in some countries. In the case of
BWR, components such as different nozzle safe ends [1], bottom
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head penetration housings [4] and core shroud support welds [5]
have suffered from SCC. The cracking was interdendritic (ID)/inter-
granular (IG)1 and usually confined to the weld metal. None of the
SCC cracks significantly penetrated the adjacent RPV base metal,
which is consistent with the very high SCC resistance of LAS under
light water reactor conditions [6,7]. Even after post-weld heat
treatment (PWHT) significant residual stress is observed in such
weld joints (see Appendix A.1) and, in particular in the context of
repair welding, and has played a major role in many of these SCC
incidents. Cold work from surface grinding or weld shrinkage etc.
also potentially affected the SCC initiation susceptibility. The weld
shrinkage strain/residual stress profile and the solidification struc-
ture (grain/dendrite boundary chemistry and misorientation) were
important factors controlling the SCC crack path and propagation
in weld joints [8–12].

The high SCC susceptibility of uncreviced bulk Alloy 182 weld
material was also confirmed by laboratory investigations for both
simulated BWR [8,13–15] and primary PWR coolant environment
[16–20]. The SCC crack growth behaviour of Alloy 182 weld
1 The SCC cracks usually grow along the high-angle solidification grain boundaries
(see Appendix A). Because of the dendritic appearance of the corresponding fracture
surface, this kind of cracking is called interdendritic in the following sections
although intergranular would be the more appropriate term.
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Fig. 1. Schematic of simulated Alloy 182-SA 508 Cl.2 dissimilar test weld with
welding direction of individual weld beads and the orientation of the primary
dendrite growth axis in the bulk weld metal and in the fusion line region. The
orientation of the MnS-inclusions and the main forming direction L of the forged
LAS plate are also shown.
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material and parametric effects (for the effect of ECP, sulphate/
chloride, cold work, sensitization, stress intensity factor, etc.) are
quite similar to those observed in wrought Alloy 600 or stainless
steels, although, the higher high-temperature yield strength of Al-
loy 182 may make it more susceptible to SCC and low-temperature
rapid crack propagation, and produce high weld residual stresses
and stress intensity factors [8]. The different grain boundary chem-
istry of the weld metal may further increase its SCC susceptibility
[8,9].

In contrast to the relatively high susceptibility of Alloy 182 to
SCC growth, lab investigations revealed that LAS and their heat-af-
fected zones (HAZ) have a very high resistance to SCC growth in
chloride-free BWR environment at temperatures of 270–290 �C
up to very high stress intensity factor levels of 50–70 MPa �m0.5

(if excessive hardness > 350 HV5 is avoided by proper welding
and PWHT parameters) [6,7]. It is stressed that for some very spe-
cific combinations of Alloy 182 dissimilar metal weld and cracking
configurations, the residual stress can shift the stress intensity fac-
tors in the interface region to such high levels that accelerated sus-
tained SCC in the adjacent LAS in high-purity BWR/normal water
chemistry (NWC) environment cannot be fully excluded, in partic-
ular in high-sulphur LAS. These situations thus also reflect a certain
safety concern.

Although many investigations on the SCC behaviour of Alloy
182 bulk weld metal [8–20] and LAS [6,7] have been performed,
little attention has been paid to the SCC behaviour in the inter-
face region between Alloy 182 and LAS, which has a complex
microstructure with a potentially increased SCC susceptibility
(see Appendix A). Most SCC investigations in Alloy 182 were re-
lated to the bulk weld metal [8–20] and to ‘homogeneous’ spec-
imens from simplified weld configurations or weld overlays and
hardly involved the interface region between Alloy 182 and
LAS. The environmentally-assisted cracking (EAC) susceptibility
of dissimilar welds has been screened by slow strain rate tests
with smooth tensile specimens [21–25]. It is not surprising that
EAC was observed in all regions under adequate testing condi-
tions: Transgranular (TG) strain-induced corrosion cracking (SICC,
[7]), e.g., occurred in the LAS in oxygenated high-temperature
water and its severity was strongly dependent on the steel sul-
phur content. As expected, IG/ID SCC was observed in Alloy 182
weld metal in both BWR and PWR water chemistries. In several
cases interface cracking along the fusion line (FL), often in con-
junction with high hardness of the interface region, has been re-
ported, thus indicating a distinct SCC susceptibility of this region.
Therefore, it can be anticipated that the SCC in the transition re-
gion plays an important role in the overall SCC behaviour in the
dissimilar weld joint.

In order to improve the understanding of the SCC behaviour in
the transition region, in particular the SCC behaviour at the fusion
line perpendicular and parallel to the fusion boundary, the SCC
crack growth behaviour in the transition region of a simulated Al-
loy 182-SA 508 Cl.2 weld joint was investigated under simulated
BWR/NWC and PWR conditions within the framework of a collab-
oration between the Fracture and Reliability Research Institute
(FRI) of Tohoku University (Japan) and Paul Scherrer Institute
(PSI, Switzerland). A special emphasis was placed to the question
whether a fast growing interdendritic SCC crack in the highly sus-
ceptible Alloy 182 weld metal can easily cross the fusion line and
significantly propagate into the adjacent low-alloy RPV steel or if
crack arrest or interface cracking do occur at or along the fusion
boundary. The following paper summarizes the most important
BWR/NWC results of this joint project. In the Appendix A some
important metallurgical and microstructural aspects of SCC in Al-
loy 182 weld metal and the interface region between the Alloy
182 weld metal and adjacent LAS are briefly summarized for the
reader who is not familiar with this topic.
2. Materials and experimental procedure

The EAC crack growth behaviour under cyclic and static loading
conditions in the interface region between the Alloy 182 bulk weld
metal and the unaffected RPV base material of a simulated dissim-
ilar metal weld joint was investigated in oxygenated high-temper-
ature water at 288 �C. The EAC crack initiation and growth
behaviour was thereby studied parallel and perpendicular to the
fusion line in different important microstructure regions, including
the bulk and dilution zone (DLZ) of the Alloy 182 weld metal, the
fusion line region, as well as the HAZ and unaffected LAS base
metal.

2.1. Test weld and specimens

The Alloy 182-LAS part of a dissimilar metal weld was simu-
lated by filling a rectangular groove in a forged quenched and tem-
pered SA 508 Cl.2 RPV steel plate by multipass SMAW (140–180 A
and 22–26 V, interpass temperature < 177 �C) with Alloy 182
(Fig. 1). After welding, a PWHT at 620 �C for 24.5 h was performed,
which resulted in a sensitized microstructure with massive chro-
mium carbide precipitation on the high-angle solidification grain
boundaries in the weld metal. The chemical composition and ten-
sile test properties of the Alloy 182 weld metal and LAS base metal
are summarized in Tables 1 and 2. Typical chemical composition
and micro hardness profiles perpendicular to the fusion line are
shown in Figs. 2 and 3.

The bulk Alloy 182 weld metal revealed a yield strength at
288 �C of 345 MPa and a SCC resistance index SCRI value of 21.3
(see Appendix A). The sulphur content of the weld metal varied be-
tween 0.007 and 0.014 wt%. The un-affected RPV base metal had a
yield strength of 440 MPa and revealed a high sulphur content of
0.016 wt% and a medium susceptibility to dynamic strain ageing.
The dilution zone (DLZ) in the Alloy 182 weld metal close to the fu-
sion line with a different chemical composition than the bulk weld
metal (BWM) had a thickness of 1.5–2.5 mm and a similar micro-
structure as the bulk weld metal. A peak micro Vickers hardness
in the range of 280–320 HV0.5 was usually observed in the region
of the fusion line. At some few locations, a very high peak hardness
of up to 470 HV0.5 was observed in the dilution zone of the Alloy
182 weld metal in the absolute vicinity of the fusion line, which
had a carbidic or martensite-like appearance. The thickness of
the weld HAZ in the LAS varied between 2 to 4.5 mm and the peak



Table 1
Chemical composition in wt% of weld filler and low-alloy RPV steel of dissimilar weld joint

Material C Ni Cr Fe P S Mn Mo Si Ti Nb + Ta Al Co Cu

Alloy 182 Electrode 0.04 70.8 14.26 9.7 0.002 0.003 2.46 – 0.24 0.05 1.87 – – 0.01
Alloy 182 PSI analysis 0.043 71.6 15.1 8.3 0.002 0.07 2.85 0.45 0.2 0.027 2.19 0.04 0.01

0.014
SA 508 Cl.2 PSI analysis 0.20 0.91 0.45 96.2 0.010 0.016 0.93 0.59 0.12 – – 0.009 0.012 0.026

Table 2
Mechanical tensile test properties of the Alloy 182 bulk weld metal and the
unaffected low-alloy RPV steel

Material T (�C) YS (MPa) UTS (MPa) A5 (%) Z (%)

Alloy 182 288 345 547 28 50
SA 508 Cl.2 25 511 645 15.5 70.4
SA 508 Cl.2 288 440 608 12.4 70.5

YS, yield strength; UTS, ultimate tensile strength; A5, uniform elongation; Z,
reduction of area.
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Fig. 2. Typical chemical composition profile across the fusion line.
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Fig. 3. Typical micro hardness profiles across the fusion line.
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hardness in the LAS HAZ was usually close to the fusion line and
below 300 HV0.5.

Two 25 mm and fourteen 12.5 mm thick compact tension C(T)
specimens with either a TS or ST orientation according to ASTM
E399 [26] were cut from different locations in the test weld joint
(Fig. 4 and Table 3). This involved 12 heterogeneous (Alloy 182-
LAS) and 4 homogenous (bulk weld metal) specimens. The speci-
mens either had a sharp (notch radius q = 0.1 mm) or blunt notch
(q = 1.5 mm). Four specimens were additionally fatigue pre-
cracked in air at room temperature with a load ratio of 0.1or 0.2
and final KI,max of 12–20 MPa �m0.5.

The crack plane in the Alloy 182 weld metal was either perpen-
dicular or parallel to the fusion line and parallel or perpendicular to
the solidification direction (primary dendrite growth axis), respec-
tively. The fatigue pre-crack-tip was either located in the bulk weld
metal or in the dilution zone of the Alloy 182 at different distances
from the fusion line. In the notched specimens, the notch-tip was
either located at the fusion line or in the dilution zone. In all het-
erogeneous specimens, the MnS-inclusions were parallel to the
crack front and crack plane (Figs. 1 and 4).

2.2. Experimental procedure

2.2.1. Test facilities
The EAC tests at PSI and FRI were performed in stainless steel

autoclaves with integrated electromechanical loading systems,
which were attached to sophisticated refreshing high-temperature
water loops (Fig. 5). During the experiments, all important
mechanical (load, pull rod stroke) and environmental parameters
at inlet and outlet (dissolved oxygen (dO), conductivity, tempera-
ture, pressure and flow) were recorded continuously. The C(T)
specimens were electrically isolated from the autoclave using zir-
conia or oxidized zirconium alloy sleeves/spacers. The electro-
chemical corrosion potential (ECP) of the specimens and the
redox potential (platinum probe) were continuously monitored
with Cu/Cu2O/ZrO2-membrane or external Ag/AgCl/0.01 m KCl-ref-
erence electrodes. Ionic impurities of the water (inlet and outlet)
were analyzed by Inductive Coupled Plasma – Atomic Emission
Spectroscopy (ICP – AES) and Ion Chromatography (IC) once or
twice during each test.

2.2.2. Crack length monitoring and post-test evaluations
In all but one test, crack advance was continuously monitored

using the reversed direct current potential drop method (DCPD)
with a resolution limit of about 1 lm in homogenous specimens.
In one experiment at FRI, the alternate current potential drop
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technique (ACPD) was used. In case of the DCPD method, calibration
curves were developed by a detailed 2-dimensional finite element
modeling of the DC potential field for the specific bimetallic weld
joint specimen/DCPD system configuration [27], since the Johnson
formula would significantly underestimate the real crack growth
increment in the dissimilar metal welds. The DCPD crack growth
results were linearly corrected with the average EAC crack incre-
ment measured on the fracture surface at 50 equidistant locations.
In spite of the finite element calibration of the DCPD, the heteroge-
neous specimens involved correction factors of 10 to 50%, which
were related to the wavy shape of the fusion line, uneven crack
fronts, out-of-mid-plane cracking at the fusion line and in particular
to the very high roughness of the fracture surfaces.

After the test, the specimens were broken apart by fatigue for
post-test evaluation. The fracture surface, cracking mode and posi-
tion of the crack-tip were analyzed by optical and scanning elec-
tron microscope (SEM) as well as with energy-dispersive X-ray
microanalysis (EDX). The fatigue pre-crack/final crack length and
EAC growth increments were measured on the fracture surface at
50 equidistant locations by optical microscope or SEM. For detailed
Table 3
Overview on investigated heterogeneous dissimilar metal weld specimens

Specimen designation Type of specimen Type of notch

MN TS 1 0.5T C(T) Air fatigue pre-crack
MN TS 2 0.5T C(T) Air fatigue pre-crack
MN ST 3 0.5T C(T) Sharp notch, q = 0.1 mm
MN TS 5 0.5T C(T) Sharp notch, q = 0.1 mm
MN ST 6 0.5T BNC(T) Blunt notch, q = 1.5 mm

MN ST 7 0.5T C(T) Sharp notch, q = 0.1 mm

MN ST 10 0.5T C(T) Sharp notch, q = 0.1 mm
MN ST 11 0.5T C(T) Sharp notch, q = 0.1 mm
MN TS 12 0.5T C(T) Sharp notch, q = 0.1 mm
MN TS 13 0.5T C(T) Sharp notch, q = 0.1 mm
MN TS 15 1 T C(T) Air fatigue pre-crack
MN TS 16 1 T C(T) Air fatigue pre-crack

DLZ, dilution zone of Alloy 182 weld metal; BWM, Alloy 182 bulk weld metal; LAS HAZ
primary dendrite growth axis.
fractographical analysis of the LAS part, the oxide film on the frac-
ture surface of one specimen half was removed by galvanostatic
reduction in an ENDOX-bath [28].

Cross sections perpendicular to the crack plane were cut from
the specimens for micro-hardness measurements and detailed
metallographical characterization (microstructure, inclusions,
crack-path, branching and secondary cracking, etc.) by optical
microscope and SEM/EDX. The cross-sections were polished and
chemically and electrochemically etched by several different pro-
cedures to reveal the different microstructural features in the dif-
ferent regions of the weld joint.

Further metallographic specimens were directly cut from the
weld joint for additional analyses of the microstructure, element-
composition and micro-hardness across the fusion line.

2.2.3. Environmental conditions
The EAC tests were performed in oxygenated high-purity high-

temperature water at 288 �C under low-flow conditions (4 to 8
autoclave exchanges per hour, local flow rate of some few mm/
s). In several cases chloride (50 ppb Cl� as NaCl) or sulphate
(30 ppb SO4

2� as H2SO4 or Na2SO4) was added to reduce the crack
initiation time or to accelerate crack growth. A DO content of 0.2
and 0.4 ppm or an increased level of 2 and 8 ppm were used,
respectively. The lower DO levels represent a realistic simulation
of the total oxidant concentration in the reactor water, whereas
the increased DO contents were used to simulate a realistic ECP
at Alloy 182 attachment welds within the RPV. The ECP of the
heterogeneous specimens of +50–+70 (0.2 or 0.4 ppm DO) and
+130–+170 mVSHE (2 or 8 ppm DO) were between the typical
values observed in homogeneous LAS and nickel-base alloys at
PSI. The corresponding redox potentials of the environment
were +250–+270 mVSHE (0.2 or 0.4 ppm DO) and +290–+300 mVSHE

(2 or 8 ppm DO).

2.2.4. Loading conditions
Before applying the different loading sequences, the specimens

were usually pre-oxidized in the test environment at a small con-
stant pre-load of 0.5 kN (KI 6 2 MPa �m0.5 in case of pre-cracked
specimens) for at least one week in order to achieve stable environ-
mental and electrochemical conditions.

In case of pre-cracked specimens with the pre-crack-tip in the
bulk or dilution zone of the Alloy 182 weld metal, the following
complex initial loading procedure was first applied to achieve a
complete transdendritic ? interdendritic transitioning along the
whole crack front and to evolve a plastic zone, which is character-
istic for a growing SCC crack:
Location of notch ground
or pre-crack-tip

Orientation of crack plane and growth
direction with respect to FL & SD

DLZ at 0.5 mm from FL \ to FL and || to SD
DLZ at 0.6 mm from FL \ to FL and || to SD
DLZ at 0.8 mm from FL \ to FL and || to SD
LAS HAZ || to FL
FL with specimen mid-plane
at fusion interface

|| to FL and \ to SD

FL with specimen mid-plane
at fusion interface

|| to FL and \ to SD

DLZ at 0.9 mm from FL \ to FL and || to SD
DLZ at 0.9 mm from FL \ to FL and || to SD
DLZ at 0.9 mm from FL \ to FL and || to SD
DLZ at 1.5 mm from FL \ to FL and || to SD
DLZ at 1.5 mm from FL \ to FL and || to SD
BWM at 3 mm of FL \ to FL and || to SD

, heat-affected zone of low-alloy steel; FL, fusion line; SD, solidification direction –
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1. Cyclic loading, stepwise increase of R from 0.3 to 0.7 at 0.01–
0.036 Hz.

2. Cyclic loading at R = 0.7 with stepwise decrease of m from 0.02
to 0.001 Hz.

3. Ceriodical partial unloading (PPU) at R = 0.7, Dthold = 9000 s,
Dttrise = Dtdecline = 500 s.

4. Constant load or near constant load (PPU wit Dthold = 24 h) with
a target KI or KI,max value of 25 to 35 MPa �m0.5.

There were some slight variations in loading step 1 and 2 in
some experiments, but this did not affect the crack growth results
in the subsequent loading phases. After this initial loading proce-
dure, constant or periodical partial unloading loading was kept
during the whole remaining test period until unloading in some
experiments. In some other tests, this phase was followed by sev-
eral sequences of cyclic, periodical partial unloading and static
loading to study the crack growth behavior in different microstruc-
ture regions of the weld joint. In order to reduce the total testing
time, the applied stress intensity factor was sometimes increased
stepwise.

In case of experiments, which started with a sharp or blunt
notch, the cyclic loading started with a low load ratio of 0.065
and a frequency of 0.036 Hz. The subsequent loading phases were
identical to those described above.

The KI,max values were varied between 20 and 60 MPa �m0.5.
With few exceptions, these values were below the ASTM E647 limit
[29] in case of cyclic loading and the ASTM E1681 limits [30] in
case of periodical partial unloading or constant loading conditions.

The SCC crack growth results were then compared with a Swed-
ish disposition line for Alloy 182 [31] and the EPRI BWRVIP-60 SCC
line for LAS [32]. The corrosion fatigue crack initiation results were
compared to the ASME III mean curve for austenitic alloys and LAS
[33–35]. For this reason a pseudo elastic notch stress range
Dr = 2 � Sa = DK/

p
q was calculated for comparison purposes [36].

The corrosion fatigue crack growth behaviour was analyzed in
the time domain and compared to a PSI BWR/NWC curve for LAS
[7,37] and a curve developed by Argonne National Laboratory
(ANL) for wrought Alloy 600 [39]. The corresponding air fatigue
crack growth rates in the LAS and Alloy 182 were estimated based
on [38] and [39], respectively.

3. Results and discussion

In the following paragraphs, the main observations of these
complex investigations are summarized and illustrated by some
selected test results. In the first two sub-sections, the SCC and
EAC crack growth behaviour perpendicular and parallel to the fu-
sion line is discussed. This is followed by a short summary of the
SCC crack growth in Alloy 182 bulk weld metal. Finally, the corro-
sion fatigue initiation and growth behaviour in the Alloy 182 weld
metal and at the fusion line is briefly outlined.

3.1. SCC crack growth behaviour perpendicular to the fusion line

The SCC behaviour perpendicular to the fusion line was investi-
gated under periodical partial unloading or constant load with fa-
tigue pre-cracked 25 and 12.5 mm thick C(T) specimens at PSI and
FRI in high-purity water and water with 30 ppb of sulphate or
50 ppb of chloride. The fatigue pre-crack-tips in the different spec-
imens were located either in the bulk or the dilution zone of the
Alloy 182 weld metal at a mean distance between 3 and 0.5 mm
from the fusion line.

As expected, fast interdendritic SCC was observed in the Alloy
182 bulk weld metal parallel to the solidification direction in oxy-
genated, high-purity high-temperature water in the typical range
of other investigations [8,14,40] (Fig. 6) and slightly below the
Swedish SCC disposition line for Alloy 182. The subsequent SCC
crack growth rates in the Alloy 182 dilution zone were similar to
those of the bulk weld metal and tended to slightly decrease with
decreasing distance to the fusion line (Fig. 7). The corresponding
SCC crack growth rates in oxygenated high-temperature water
with 50 ppb Cl� or 30 ppb SO4

2� were about a factor of 10 and 5
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higher than in high-purity water and slightly higher than the
Swedish SCC disposition line for Alloy 182 (Fig. 26 in Section 3.3).

Cessation of SCC was observed in high-purity or sulphate-con-
taining water in all tests under periodical partial unloading or con-
stant load conditions for those parts of the crack front, which
reached the fusion line. As soon as the overwhelming part of the
crack front has reached the fusion line, a drastic drop of interden-
dritic SCC crack growth rates (Figs. 8 and 9) was observed even
under aggressive environmental conditions (8 ppm DO and 30 ppb
SO4

2�) and crack arrest occurred at or close to the fusion line
(Figs. 9(b), 10, 11). Crack arrest at the fusion line was confirmed in
one test with periodical partial unloading, which was running for
further 800 hours after the DCPD had indicated cessation of crack
growth close to the fusion line (i.e., da/dtSCC < 1 � 10�11 m/s). Minor
crack growth (< 60 lm) into the heat-affected zone of the RPV steels
with subsequent crack arrest was observed at some few, very local-
ized regions along the crack front, in some specimens. On the other
hand, at several locations along the crack front crack branching and
deflection of EAC crack growth (up to some few 100 mm) along the
fusion line in the dilution zone of Alloy 182 in the direct vicinity of
the fusion boundary was a quite common observation in most
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specimens, which indicates an increased SCC susceptibility of this
region.

After cessation of EAC crack growth under periodical partial
unloading at the fusion boundary in high-temperature water with
30 ppb of sulphate, the crack was forced to cross the fusion line by
severe cyclic loading under aggressive environmental conditions in
one specimen. Even in case of severe cyclic loading, the crack had
problems to cross the fusion line and rather tended to grow in the
Alloy 182 dilution zone along the fusion line before it finally en-
tered into the RPV steel [Fig. 12(a)]. This again indicates an in-
creased EAC susceptibility of the interface region parallel and
close to the fusion line in the dilution zone of the weld metal. After
crossing of the fusion line under severe cyclic loading conditions,
the EAC crack growth rates under periodical partial unloading in
the LAS HAZ were more than one order of magnitude lower than
in the Alloy 182 bulk weld material. Suddenly after switching from
periodical partial unloading to constant load, cessation of SCC and
crack arrest occurred in both the LAS HAZ and bulk LAS in spite of
the high applied stress intensity factors and aggressive environ-
mental conditions (Fig. 13). The EAC crack growth in the un-af-
fected LAS thus only grew under cyclic load (or during the slow
rising load phase of the periodical partial unloading) by corrosion
fatigue (or strain-induced corrosion cracking), but not by SCC un-
der pure static loading. The corrosion fatigue rates were thereby
in the typical range for homogenous LAS base metal and LAS HAZ
specimens from other PSI investigations [7,37] (Fig. 14). The Alloy
182 bulk weld material and the bulk LAS of the bimetallic weld
joint specimen therefore behaved exactly in the same manner as
corresponding materials in homogeneous specimens.

In contrast to high-purity or sulphate containing oxygenated
water, the interdendritic SCC in the Alloy 182 weld metal in
high-temperature water with 50 ppb of chloride very easily
crossed the fusion line straight forward on the same plane under
periodical partial unloading and constant loading conditions (Figs.
12(b), 15 and 16) with very minor cracking along the interface. In
the LAS HAZ and LAS base metal the crack grew with an extremely
high rate under constant load. The SCC rates were thereby in the
typical range of similar PSI investigations with chloride impurities
and homogeneous LAS specimens (Fig. 17) [7]. The same observa-
tion was also made under cyclic load in chloride containing water
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[37]. The trans- or mixed inter-/transdendritic corrosion fatigue
crack also very easily crossed the fusion line under cyclic load
and further propagated along a transgranular path in the LAS
HAZ. The corrosion fatigue crack growth rates were thereby in
the typical range for LAS under similar system conditions [7,37].
It was thus clearly demonstrated, that in contrast to high-purity
or sulphate containing high-temperature water, a growing mixed
trans-/interdendritic corrosion fatigue and interdendritic SCC crack
in the Alloy 182 weld metal can very easily cross the fusion line un-
der both cyclic or static load in case of chloride impurities in the
reactor coolant.

3.2. SCC initiation and crack growth behaviour parallel to the fusion
line

The EAC behaviour parallel to the fusion line was investigated
with notched 12.5 mm thick 0.5 T C(T) specimens, which either
had a sharp (q = 0.1 mm) or a blunt (q = 1.5 mm) circular notch
and which were pre-cracked in the test environment under cyclic
load. The notch-tip was located in the Alloy 182 dilution zone in
the vicinity of the fusion line. The plane of the subsequent EAC
crack growth was parallel to the fusion line and perpendicular to
the solidification direction (and primary dendrite axis) of the Alloy
182 weld metal.

In case of the sharp notch, the crack initiated at the notch-tip in
the dilution zone of the Alloy 182 weld metal by fatigue with no
(high-purity water) or only minor (50 ppb Cl�) environmental ef-
fects (Fig. 18). After a crack advance of about 200 lm, stationary
‘long crack’ growth behaviour was observed. As shown schemati-
cally in Fig. 19(a), the crack grew transdendritically by corrosion
fatigue parallel to the fusion line (perpendicular to the solidifica-
tion direction). The environmental acceleration of corrosion fatigue
increased with decreasing loading frequency (Fig. 20). The corre-
sponding corrosion fatigue crack growth rates were in the same
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range as the ANL-curve for Alloy 600 [39] and a factor of 5–10 low-
er than typical interdendritic corrosion fatigue rates perpendicular
to the fusion line (parallel to the solidification direction) under
identical loading and environmental conditions (see Fig. 27 in Sec-
tion 3.4). The transdendritic EAC crack growth rates under subse-
quent periodical partial unloading confirmed the absence of any
significant SCC contribution during the constant load periods
(Fig. 20). Briefly after addition of 30 ppb of sulphate, deflection of
crack growth from its original path occurred under periodical
partial unloading and the crack grew interdendritically along
the solidification direction towards the fusion line by SCC
(Figs. 19(a), 20 and 21). The SCC crack growth rates were thereby
in the typical range for Alloy 182 for this KI-level and environmen-
tal conditions. When the crack front reached the fusion line, crack
arrest occurred at most locations at the fusion boundary, but in
some isolated regions the crack further grew along the fusion
boundary, which further confirmed the previous observations once
more (Fig. 21).

The basic idea of the corresponding test with the blunt notch
specimen (q = 1.5 mm) was that the crack can initiate in and easily
grow along the most susceptible microstructure region. In this test,
50 ppb chloride was added from the beginning of the experiment
to reduce the required crack initiation time. Although the
mid-plane of the specimen was located in the dilution zone of Al-
loy 182 very close to the fusion line, the crack initiated in the HAZ
of the LAS by corrosion fatigue [Fig. 19(b)]. This indicates a higher
corrosion fatigue susceptibility of the LAS with respect to the Alloy
182 weld metal under these environmental and loading conditions,
which is not surprising. It is stressed that the situation might be
opposite under pure static loading conditions as shown by service
experience, in particular in high-purity water without chloride.
Unfortunately, typical SCC initiation times of one to several years
make such investigations under lab/project conditions impossible.
With respect to air environment the number of cycles to crack ini-
tiation was drastically reduced by the action of the test environ-
ment as it is expected for LAS under these conditions (Fig. 22) [34].

Subsequent to initiation, the corrosion fatigue crack growth rate
in the LAS HAZ continuously accelerated. After a crack advance of
about 400 lm, stationary transgranular corrosion fatigue crack
growth with a rate in the range of the low-sulphur line of the Ford
& Andresen EAC model [41,42] was observed (which might be
related to the fact that only few MnS-inclusions were intersected
by the short crack enclave). With further crack growth and
decreasing loading frequency the environmental acceleration of
corrosion fatigue crack growth in the LAS HAZ increased and the
corrosion fatigue crack growth rates shifted towards the typical
PSI long-crack corrosion fatigue data [7,37] of homogeneous LAS
specimens under NWC conditions (Fig. 23). The corrosion fatigue
crack grew parallel to the specimen mid-plane and therefore
slowly approached the fusion line because of its wavy form
(through the sequence of the individual weld beads). After switch-
ing to periodical partial unloading the crack in the LAS HAZ grew
by SCC with a high rate, which was in the typical range for LAS
in chloride-containing, oxygenated high-temperature water (Fig.
17). Close to the fusion line, constant load was applied and the
transgranular crack further grew with a fast SCC rate. When the
crack front reached the fusion line, it easily crossed this boundary
and then further grew along the main dendrites in the dilution
zone of the Alloy 182 weld metal parallel to the solidification direc-
tion (and therefore perpendicular to the fusion boundary), which
caused a deflection of the SCC crack plane by an angle of 45 to
90� at the fusion boundary. The resulting mixed mode loading in
combination with the high surface roughness then resulted in a
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crack closure induced cessation of the SCC crack growth in this re-
gion at most locations of the crack front (Fig. 24). After a load in-
crease, the crack in the dilution zone of the Alloy 182 weld metal
close to the fusion boundary re-started to grow. The SCC crack
growth rate was thereby in the typical range for Alloy 182 under
these test conditions (Fig. 25).

3.3. SCC behaviour of the Alloy 182 bulk weld metal

The SCC crack growth rates in the Alloy 182 bulk weld metal
parallel to the solidification direction in high-purity water were
only slightly higher than in the Alloy 182 dilution zone and slightly
below the current Swedish SCC disposition line for Alloy 182 and
BWR/NWC conditions, which further confirms the adequacy and
conservatism of this disposition line (Figs. 7 and 25). A plateau
SCC cracking behaviour was observed above a KI-value of 20–
25 MPa �m1/2, i.e., the SCC crack growth rates were independent
of the applied KI [Figs. 7, 25 and 26(a)]. The SCC crack growth rates
Fig. 24. Apparent cessation of interdendritic SCC growth in the dilution zone of the
Alloy 182 weld metal of the blunt-notched dissimilar metal weld specimen MN ST 6
briefly after crossing the fusion boundary because of crack closure and re-
establishment of sustained SCC with growth rates in the typical range for Alloy
182 weld metal after a small load increase.
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Fig. 27. Comparison of trans- and inter-dendritic corrosion fatigue crack growth
rates in Alloy 182 weld metal perpendicular and parallel to the solidification axis in
oxygenated high-temperature water with the ANL corrosion fatigue curve for
wrought Alloy 600 [39] and a modified curve, which includes an additional SCC
contribution at low-loading frequencies or high-load ratios.
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in the Alloy 182 bulk weld metal parallel to the solidification
direction in oxygenated high-temperature water with 50 ppb
Cl� or 30 ppb SO4

2� were about a factor of 10 and 5 higher than
in high-purity water and slightly higher than the Swedish SCC dis-
position line for Alloy 182 [Fig. 26(a)] [31]. The transdendritic EAC
crack growth rates under periodical partial unloading perpendicu-
lar to the solidification direction were more than a factor of 10 low-
er than the corresponding interdendritic EAC crack growth rates
parallel to the solidification direction [Fig. 26(b)].

3.4. Corrosion fatigue behaviour of the Alloy 182 bulk weld metal

A higher corrosion fatigue initiation susceptibility was observed
in the LAS HAZ than in the dilution zone of the Alloy 182 bulk weld
metal (see Section 3.2). In good agreement with wrought Alloy 600
and in contrast to LAS [34], only a very minor environmental
reduction of fatigue life was observed in Alloy 182 under BWR/
NWC conditions (Fig. 18). On the other hand, significant environ-
mental acceleration of fatigue crack growth of mechanically long
cracks was observed in Alloy 182 weld metal under BWR/NWC
conditions at loading frequencies below 0.1 Hz (Figs. 20 and 27).
The environmental acceleration increased with decreasing loading
frequency. The transdendritic corrosion fatigue crack growth rates
under cyclic load perpendicular to the solidification axis were a
factor of 5–10 lower than the corresponding interdendritic corro-
sion fatigue crack growth rates parallel to the solidification axis
and in a similar range for the wrought Alloy 600 and the ANL-curve
for Alloy 600 [39] (Fig. 27). Interdendritic corrosion fatigue crack
growth rates in Alloy 182 under cyclic load were significantly high-
er (a factor of 10) than in wrought Alloy 600 and the ANL-curve for
Alloy 600 (Fig. 27).

4. Summary and conclusions

Recent SCC incidents in the weld metal of bottom head penetra-
tion housing and core shroud support welds of BWR have drawn
the attention to the SCC behaviour in the transition region of Alloy
182-LAS dissimilar weld joints, and in particular, to the issue
whether an intergranular/interdendritic SCC crack propagating in
the weld metal could easily penetrate through the fusion line into
the adjacent low-alloy RPV steel. In order to improve the under-
standing of the SCC behaviour in the transition region, the SCC
crack growth behaviour in the transition region of a simulated
Alloy 182-SA 508 Cl.2 weld joint was investigated under simulated
BWR/NWC conditions at FRI and PSI.

The main conclusions of these experimental investigations can
be summarized as follows [3,7]: The observed EAC cracking behav-
iour correlates excellently with the field experience, where SCC
cracking was usually confined to the Alloy 182 weld metal and
no cases of SCC were observed in LAS primary pressure boundary
components. The fusion boundary seems to represent a significant
barrier for SCC crack growth from the Alloy 182 to the RPV steel,
but minor crack growth into the adjacent RPV steel is not impossi-
ble. Under static loading conditions in chloride-free, high-temper-
ature water, there seems to be little risk, that a fast growing
interdendritic SCC crack may cross the fusion line and significantly
propagate into the adjacent low-alloy RPV steel. Even if a crack
would cross the fusion line under static load, it is anticipated that
cessation of SCC occurs in the LAS HAZ or at the latest in the unaf-
fected LAS base material. Major EAC crack propagation into the RPV
material is therefore not expected as long as the number of plant
transients is limited and severe and prolonged chloride excursions
are avoided (i.e., if water chemistry is kept below the EPRI action
level 1 limit).

These important conclusions should be verified by further tests
with additional dissimilar weld joints representing different weld-
ing qualities and different LAS base materials (steel sulphur con-
tent and DSA susceptibility). Since the stress intensity factor in
the interface region of dissimilar metal welds can reach quite high
levels in some field situations, such investigations should also in-
clude experiments in the KI-range of 50–70 MPa �m0.5 with chlo-
ride levels below 5–10 ppb, which requires the use of sufficiently
large specimens. Because of the safety concern in case of SCC in
the RPV, the special emphasis of these evaluations should be
placed to a better establishment of the KI-thresholds, where the
onset of fast SCC in LAS may occur.

The observed interface cracking behaviour should also be veri-
fied by some few experiments under primary PWR water condi-
tions at higher temperatures of 320 �C, although the situation is
rather relaxed here, because of the very low SCC and moderate cor-
rosion fatigue susceptibilities of LAS at low ECP.
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Appendix A

A.1. Metallurgical and microstructural aspects of SCC in Alloy
182 weld metal

Manually welded multipass dissimilar weld joints usually have
a complex welding configuration (e.g., safe ends with cladding and
weld butter) and microstructure, which may significantly differ
from weld to weld depending on welding parameters. During
solidification, parallel bundles of dendrites with nearly identical
crystallographic orientation form and grow into the melt along
the direction of heat flux. The boundaries between these similarly
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oriented dendrites are often called solidification subgrain bound-
aries (SSGB) and tend to have low-angular mismatches, as well
as low energy. Where different bundles of dendrites intersect or
overlap, larger angular mismatches often occur between the grains
of the bundles. In this case, the resulting high-angle grain bound-
aries, termed solidification grain boundaries (SGB), can be high-en-
ergy random grain boundaries or low-energy coincident site lattice
(CSL) boundaries. SGB can migrate on cooling after solidification
and during re-heating and result in a straighter, migrated grain
boundary (MGB) [20].

The general structure of an individual weld pass consists of
elongated columnar dendrites at the edge of the melt pool, where
heat transfer is highly directional, and more equiaxed cellular den-
drites in the middle with slower cooling. During solidification, the
dendrite arms grow towards each other and trap enriched (with S,
P, Si, Mn and Nb) liquid in the interstices along with melt oxides
and slag inclusions. Therefore, Mn and Nb segregation is often ob-
served in the grains and the grain boundaries are usually decorated
with precipitates (carbides) and enriched with S, P and Si. Each
weld pass heats up the layers below and can cause recrystallization
and migration of SGB, segregation, precipitation (e.g., carbides) or
hot cracking and produce a wide range of microstructures poten-
tially susceptible to SCC [8,20].

PWHT of the weld buttering is a standard practice, and PWHT is
in some cases also performed on the weld filler metal following fi-
nal welding. In addition, PWHT often occurs indirectly as a conse-
quence of stress relief heat treatment performed on adjacent LAS
components, but in this case the stress relief temperature is well
below the optimum for the more creep/relaxation resistant nickel
base alloys. While stress relief treatment only slightly reduces
the peaks in residual stress, it can produce some elevation in yield
strength/hardness and potentially exacerbate Cr depletion/sensiti-
zation by carbide precipitations, which both may further increase
the SCC susceptibility of this region [8]. As-welded structures are
thus usually less sensitized than welds, which were PWHT,
although both behaved very similarly in lab SCC CGR studies [8].
In-service thermal ageing might further exacerbate SCC suscepti-
bility [2].

The grain boundary chemistry and misorientation in the weld
metal as well as the S, P, Si and Cr content and the stabilization ra-
tio (Nb + Ti vs. C content) were material factors, which affected the
SCC cracking behaviour in the Alloy 182 weld metal [2,8–10]:

S and Si grain boundary segregation affects the anodic dissolu-
tion and repassivation behaviour at the grain boundaries and/or
can result in decohesion and grain boundary weakening. The
high-angle random boundaries are prone to segregation and pre-
cipitation, while low-energy boundaries, such as low-angle bound-
aries, are not [10]. Furthermore, the strong mismatch in Taylor
factor in high-angle boundaries favours a higher strain incompati-
bility and grain boundary deformation and therefore further
promotes IG/ID cracking [11]. Low-angle boundaries are more
resistant to SCC than high-angle coincident and random bound-
aries, the latter being the least resistant [10]. The different suscep-
tibilities are also the main reason for crack pinning phenomena
and uneven crack fronts in SCC lab testing.

SCC cracks in weld metals typically follow the higher energy
random SGB and/or MGB [20]. The orientation of the crack in the
weld, i.e., relative to the weld’s columnar microstructure, has a
strong influence on the crack growth rate. Cracks grow fastest
along high-energy grain boundaries in the direction of main den-
drite growth, and next fastest along high-energy grain boundaries
perpendicular to the direction of dendrite growth but parallel to
the welding direction [20]. Cracks that grow perpendicular to the
high-energy grain boundaries, i.e., perpendicular to the columnar
dendrites, grow significantly more slowly. In the interface region
between the weld metal and the heavy-section LAS structures,
the main dendrite growth direction is perpendicular to the fusion
line according to the heat-flux during welding [20].

Cr strongly affects the SCC behaviour in Ni-base alloys since it
significantly improves their corrosion resistance and repassivation
behaviour. Cr has a high affinity to C and readily forms carbides
such as Cr23C6 or Cr7C3, which can precipitate at grain boundaries.
This may result in Cr depletion in a narrow zone close to the grain
boundary (sensitization) and concurrent higher susceptibility to IG
corrosion and IG SCC at high ECP (BWR/NWC), although this effect
is less pronounced than in stainless steels [2,8]. The problem of Cr
depletion can be reduced by either increasing the chromium con-
tent or by introducing elements with high affinity to C like Nb
and Ti, which form very stable carbides. This aspect is reflected
by the SCC resistance index SCRI [43] in Eq. (1), which is used by
the BWR vendors to characterize the SCC susceptibility of Ni-
alloys.

SCRI ¼ Crþ ðNbþ TaÞ � 5þ Ti � 10� 116:5 � C ð1Þ

In wrought Alloy 600, grain boundary carbide improved its IG
SCC resistance, which has been related to the reduction in grain
boundary sliding. Such correlations were not observed in Alloy
182 weld metals [44].

Carbon strongly affects the mechanical properties and yield
strength of the material by primary (MC, etc.) and secondary car-
bide (M23C6, etc.) precipitation. A higher C content usually results
in a higher high-temperature yield strength, which may make
the alloy more susceptible to SCC (steeper strain gradient and high-
er crack-tip strain rate) and low-temperature rapid crack propaga-
tion, and produce high weld residual stresses and stress intensity
factors. On the other hand, high carbon content also favours sensi-
tization. Similarly to yield strength, cold work (e.g., from surface
grinding or weld shrinkage strain, etc.) also increases SCC crack
growth rates and susceptibility at high (BWR/NWC) and low ECP
(PWR, BWR/HWC) [8].

A.2. Metallurgical and microstructural aspects of SCC in the interface
region between the Alloy 182 weld and LAS base metal

In the transition region between the Alloy 182 weld metal and
the LAS a very complex microstructure with varying chemical com-
position can evolve, e.g., due to dilution of alloying elements be-
tween the Alloy 182 weld filler and LAS base metal during
welding or the migration of C from the LAS to the weld metal dur-
ing PWHT: In the weld metal close to the fusion line, a few mm
thick zone with different chemical composition from the mixing
of the weld filler material with the molten LAS is observed. The re-
duced Cr (and Ni) content in this dilution zone close to the LAS
tends to increase its corrosion and SCC susceptibility (e.g., by the
effect of Cr on the repassivation behaviour) with respect to the
bulk weld metal. The local formation of a very narrow and hard
layer of martensite on cooling in the weld metal adjacent to the fu-
sion boundary is possible, but requires a very high dilution and is
thus much less frequently observed than in stainless steel weld fil-
ler materials.

As a consequence of the C migration, PWHT can potentially pro-
duce a more distinct elevation in yield strength/hardness and more
severe Cr depletion/sensitization both by carbide precipitations in
the interface region compared to the bulk weld metal, which both
may further increase the SCC susceptibility of this region. A further
consequence of C diffusion is that the LAS may become slightly
decarburized in a zone adjacent to the fusion boundary in severe
cases. This decarburized zone may be softer and may have a
lower yield strength than the parent LAS, and therefore a poten-
tially higher susceptibility to SICC during plant transients, but in-
creased SCC resistance under stationary operating conditions. The
LAS weld HAZ of dissimilar weld joints usually has a lower peak



210 H.P. Seifert et al. / Journal of Nuclear Materials 378 (2008) 197–210
hardness (6 300 HV5) than in welds between LAS components
(6 350 HV5).

The moderately different thermal expansion coefficient of Alloy
182 and LAS may produce thermal fit-up stress at the interface
during start-up/shut-down and also at operating temperature
and thus result in a change of the acting stress intensity factor in
the field, although the situation is much less severe than with
stainless steel weld filler metals.

Significant galvanic effects are not expected, since the ECP of
the LAS in BWR/NWC environment is only slightly lower (50–
100 mV) than that of Alloy 182 and since the throwing power is
very limited in high-purity (very low conductivity) water.
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